57 research outputs found

    Is telomere length socially patterned? Evidence from the West of Scotland Twenty-07 study

    Get PDF
    Lower socioeconomic status (SES) is strongly associated with an increased risk of morbidity and premature mortality, but it is not known if the same is true for telomere length, a marker often used to assess biological ageing. The West of Scotland Twenty-07 Study was used to investigate this and consists of three cohorts aged approximately 35 (N = 775), 55 (N = 866) and 75 years (N = 544) at the time of telomere length measurement. Four sets of measurements of SES were investigated: those collected contemporaneously with telomere length assessment, educational markers, SES in childhood and SES over the preceding twenty years. We found mixed evidence for an association between SES and telomere length. In 35-year-olds, many of the education and childhood SES measures were associated with telomere length, i.e. those in poorer circumstances had shorter telomeres, as was intergenerational social mobility, but not accumulated disadvantage. A crude estimate showed that, at the same chronological age, social renters, for example, were nine years (biologically) older than home owners. No consistent associations were apparent in those aged 55 or 75. There is evidence of an association between SES and telomere length, but only in younger adults and most strongly using education and childhood SES measures. These results may reflect that childhood is a sensitive period for telomere attrition. The cohort differences are possibly the result of survival bias suppressing the SES-telomere association; cohort effects with regard different experiences of SES; or telomere possibly being a less effective marker of biological ageing at older ages

    Custom Integrated Circuits

    Get PDF
    Contains reports on six research projects.U.S. Air Force - Office of Scientific Research (Grant AFOSR-86-0164)U.S. Navy - Office of Naval Research (Contract N00014-80-C-0622)National Science Foundation (Grant ECS-83-10941

    Custom Integrated Circuits

    Get PDF
    Contains reports on nine research projects.Analog Devices, Inc.International Business Machines, Inc.Joint Services Electronics Program (Contract DAALO03-86-K-0002)U.S. Air Force - Office of Scientific Research (Grant AFOSR 86-0164)Rockwell International CorporationOKI SemiconductorU.S. Navy - Office of Naval Research (Contract N00014-81-K-0742)Charles Stark Draper LaboratoryDARPA/U.S. Navy - Office of Naval Research (Contract N00014-80-C-0622)DARPA/U.S. Navy - Office of Naval Research (Contract N00014-87-K-0825)National Science Foundation (Grant ECS-83-10941)AT&T Bell Laboratorie

    The DBOX Corpus Collection of Spoken Human-Human and Human-Machine Dialogues

    Get PDF
    This paper describes the data collection and annotation carried out within the DBOX project ( Eureka project, number E! 7152). This project aims to develop interactive games based on spoken natural language human-computer dialogues, in 3 European languages: English, German and French. We collect the DBOX data continuously. We first start with human-human Wizard of Oz experiments to collect human-human data in order to model natural human dialogue behaviour, for better understanding of phenomena of human interactions and predicting interlocutors actions, and then replace the human Wizard by an increasingly advanced dialogue system, using evaluation data for system improvement. The designed dialogue system relies on a Question-Answering (QA) approach, but showing truly interactive gaming behaviour, e.g., by providing feedback, managing turns and contact, producing social signals and acts, e.g., encouraging vs. downplaying, polite vs. rude, positive vs. negative attitude towards players or their actions, etc. The DBOX dialogue corpus has required substantial investment. We expect it to have a great impact on the rest of the project. The DBOX project consortium will continue to maintain the corpus and to take an interest in its growth, e.g., expand to other languages. The resulting corpus will be publicly released

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    TBP Binding-Induced Folding of the Glucocorticoid Receptor AF1 Domain Facilitates Its Interaction with Steroid Receptor Coactivator-1

    Get PDF
    The precise mechanism by which glucocorticoid receptor (GR) regulates the transcription of its target genes is largely unknown. This is, in part, due to the lack of structural and functional information about GR's N-terminal activation function domain, AF1. Like many steroid hormone receptors (SHRs), the GR AF1 exists in an intrinsically disordered (ID) conformation or an ensemble of conformers that collectively appears to be unstructured. The GR AF1 is known to recruit several coregulatory proteins, including those from the basal transcriptional machinery, e.g., TATA box binding protein (TBP) that forms the basis for the multiprotein transcription initiation complex. However, the precise mechanism of this process is unknown. We have earlier shown that conditional folding of the GR AF1 is the key for its interactions with critical coactivator proteins. We hypothesize that binding of TBP to AF1 results in the structural rearrangement of the ID AF1 domain such that its surfaces become easily accessible for interaction with other coactivators. To test this hypothesis, we determined whether TBP binding-induced structure formation in the GR AF1 facilitates its interaction with steroid receptor coactivator-1 (SRC-1), a critical coactivator that is important for GR-mediated transcriptional activity. Our data show that stoichiometric binding of TBP induces significantly higher helical content at the expense of random coil configuration in the GR AF1. Further, we found that this induced AF1 conformation facilitates its interaction with SRC-1, and subsequent AF1-mediated transcriptional activity. Our results may provide a potential mechanism through which GR and by large other SHRs may regulate the expression of the GR-target genes

    Lynx Mission Concept Status

    Get PDF
    Lynx is a concept under study for prioritization in the 2020 Astrophysics Decadal Survey. Providing orders of magnitude increase in sensitivity over Chandra, Lynx will examine the first black holes and their galaxies, map the large-scale structure and galactic halos, and shed new light on the environments of young stars and their planetary systems. In order to meet the Lynx science goals, the telescope consists of a high-angular resolution optical assembly complemented by an instrument suite that may include a High Definition X-ray Imager, X-ray Microcalorimeter and an X-ray Grating Spectrometer. The telescope is integrated onto the spacecraft to form a comprehensive observatory concept. Progress on the formulation of the Lynx telescope and observatory configuration is reported in this paper

    Comprehensive overview of the structure and regulation of the glucocorticoid receptor

    Get PDF
    Glucocorticoids are among the most prescribed drugs worldwide for the treatment of numerous immune and inflammatory disorders. They exert their actions by binding to the glucocorticoid receptor (GR), a member of the nuclear receptor superfamily. There are several GR isoforms resulting from alternative RNA splicing and translation initiation of the GR transcript. Additionally, these isoforms are all subject to several transcriptional, post-transcriptional, and post-translational modifications, all of which affect the protein's stability and/or function. In this review, we summarize recent knowledge on the distinct GR isoforms and the processes that generate them. We also review the importance of all known transcriptional, post-transcriptional, and post-translational modifications, including the regulation of GR by microRNAs. Moreover, we discuss the crucial role of the putative GR-bound DNA sequence as an allosteric ligand influencing GR structure and activity. Finally, we describe how the differential composition and distinct regulation at multiple levels of different GR species could account for the wide and diverse effects of glucocorticoids

    Circulating microRNAs in sera correlate with soluble biomarkers of immune activation but do not predict mortality in ART treated individuals with HIV-1 infection: A case control study

    Get PDF
    Introduction: The use of anti-retroviral therapy (ART) has dramatically reduced HIV-1 associated morbidity and mortality. However, HIV-1 infected individuals have increased rates of morbidity and mortality compared to the non-HIV-1 infected population and this appears to be related to end-organ diseases collectively referred to as Serious Non-AIDS Events (SNAEs). Circulating miRNAs are reported as promising biomarkers for a number of human disease conditions including those that constitute SNAEs. Our study sought to investigate the potential of selected miRNAs in predicting mortality in HIV-1 infected ART treated individuals. Materials and Methods: A set of miRNAs was chosen based on published associations with human disease conditions that constitute SNAEs. This case: control study compared 126 cases (individuals who died whilst on therapy), and 247 matched controls (individuals who remained alive). Cases and controls were ART treated participants of two pivotal HIV-1 trials. The relative abundance of each miRNA in serum was measured, by RTqPCR. Associations with mortality (all-cause, cardiovascular and malignancy) were assessed by logistic regression analysis. Correlations between miRNAs and CD4+ T cell count, hs-CRP, IL-6 and D-dimer were also assessed. Results: None of the selected miRNAs was associated with all-cause, cardiovascular or malignancy mortality. The levels of three miRNAs (miRs -21, -122 and -200a) correlated with IL-6 while miR-21 also correlated with D-dimer. Additionally, the abundance of miRs -31, -150 and -223, correlated with baseline CD4+ T cell count while the same three miRNAs plus miR- 145 correlated with nadir CD4+ T cell count. Discussion: No associations with mortality were found with any circulating miRNA studied. These results cast doubt onto the effectiveness of circulating miRNA as early predictors of mortality or the major underlying diseases that contribute to mortality in participants treated for HIV-1 infection
    corecore